Metamath Proof Explorer


Theorem mulasspr

Description: Multiplication of positive reals is associative. Proposition 9-3.7(i) of Gleason p. 124. (Contributed by NM, 18-Mar-1996) (New usage is discouraged.)

Ref Expression
Assertion mulasspr A𝑷B𝑷C=A𝑷B𝑷C

Proof

Step Hyp Ref Expression
1 df-mp 𝑷=w𝑷,v𝑷x|ywzvx=y𝑸z
2 mulclnq y𝑸z𝑸y𝑸z𝑸
3 dmmp dom𝑷=𝑷×𝑷
4 mulclpr f𝑷g𝑷f𝑷g𝑷
5 mulassnq f𝑸g𝑸h=f𝑸g𝑸h
6 1 2 3 4 5 genpass A𝑷B𝑷C=A𝑷B𝑷C