Metamath Proof Explorer


Theorem ltexprlem7

Description: Lemma for Proposition 9-3.5(iv) of Gleason p. 123. (Contributed by NM, 8-Apr-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypothesis ltexprlem.1 C = x | y ¬ y A y + 𝑸 x B
Assertion ltexprlem7 A 𝑷 B 𝑷 A B B A + 𝑷 C

Proof

Step Hyp Ref Expression
1 ltexprlem.1 C = x | y ¬ y A y + 𝑸 x B
2 1 ltexprlem5 B 𝑷 A B C 𝑷
3 ltaddpr A 𝑷 C 𝑷 A < 𝑷 A + 𝑷 C
4 addclpr A 𝑷 C 𝑷 A + 𝑷 C 𝑷
5 ltprord A 𝑷 A + 𝑷 C 𝑷 A < 𝑷 A + 𝑷 C A A + 𝑷 C
6 4 5 syldan A 𝑷 C 𝑷 A < 𝑷 A + 𝑷 C A A + 𝑷 C
7 3 6 mpbid A 𝑷 C 𝑷 A A + 𝑷 C
8 7 pssssd A 𝑷 C 𝑷 A A + 𝑷 C
9 8 sseld A 𝑷 C 𝑷 w A w A + 𝑷 C
10 9 2a1d A 𝑷 C 𝑷 B 𝑷 w B w A w A + 𝑷 C
11 10 com4r w A A 𝑷 C 𝑷 B 𝑷 w B w A + 𝑷 C
12 11 expd w A A 𝑷 C 𝑷 B 𝑷 w B w A + 𝑷 C
13 prnmadd B 𝑷 w B v w + 𝑸 v B
14 13 ex B 𝑷 w B v w + 𝑸 v B
15 elprnq B 𝑷 w + 𝑸 v B w + 𝑸 v 𝑸
16 addnqf + 𝑸 : 𝑸 × 𝑸 𝑸
17 16 fdmi dom + 𝑸 = 𝑸 × 𝑸
18 0nnq ¬ 𝑸
19 17 18 ndmovrcl w + 𝑸 v 𝑸 w 𝑸 v 𝑸
20 15 19 syl B 𝑷 w + 𝑸 v B w 𝑸 v 𝑸
21 20 simpld B 𝑷 w + 𝑸 v B w 𝑸
22 vex v V
23 22 prlem934 A 𝑷 z A ¬ z + 𝑸 v A
24 23 adantr A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A
25 prub A 𝑷 z A w 𝑸 ¬ w A z < 𝑸 w
26 ltexnq w 𝑸 z < 𝑸 w x z + 𝑸 x = w
27 26 adantl A 𝑷 z A w 𝑸 z < 𝑸 w x z + 𝑸 x = w
28 25 27 sylibd A 𝑷 z A w 𝑸 ¬ w A x z + 𝑸 x = w
29 28 ex A 𝑷 z A w 𝑸 ¬ w A x z + 𝑸 x = w
30 29 ad2ant2r A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A w 𝑸 ¬ w A x z + 𝑸 x = w
31 vex z V
32 vex x V
33 addcomnq f + 𝑸 g = g + 𝑸 f
34 addassnq f + 𝑸 g + 𝑸 h = f + 𝑸 g + 𝑸 h
35 31 22 32 33 34 caov32 z + 𝑸 v + 𝑸 x = z + 𝑸 x + 𝑸 v
36 oveq1 z + 𝑸 x = w z + 𝑸 x + 𝑸 v = w + 𝑸 v
37 35 36 syl5eq z + 𝑸 x = w z + 𝑸 v + 𝑸 x = w + 𝑸 v
38 37 eleq1d z + 𝑸 x = w z + 𝑸 v + 𝑸 x B w + 𝑸 v B
39 38 biimpar z + 𝑸 x = w w + 𝑸 v B z + 𝑸 v + 𝑸 x B
40 ovex z + 𝑸 v V
41 eleq1 y = z + 𝑸 v y A z + 𝑸 v A
42 41 notbid y = z + 𝑸 v ¬ y A ¬ z + 𝑸 v A
43 oveq1 y = z + 𝑸 v y + 𝑸 x = z + 𝑸 v + 𝑸 x
44 43 eleq1d y = z + 𝑸 v y + 𝑸 x B z + 𝑸 v + 𝑸 x B
45 42 44 anbi12d y = z + 𝑸 v ¬ y A y + 𝑸 x B ¬ z + 𝑸 v A z + 𝑸 v + 𝑸 x B
46 40 45 spcev ¬ z + 𝑸 v A z + 𝑸 v + 𝑸 x B y ¬ y A y + 𝑸 x B
47 1 abeq2i x C y ¬ y A y + 𝑸 x B
48 46 47 sylibr ¬ z + 𝑸 v A z + 𝑸 v + 𝑸 x B x C
49 39 48 sylan2 ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B x C
50 df-plp + 𝑷 = x 𝑷 , w 𝑷 z | f x v w z = f + 𝑸 v
51 addclnq f 𝑸 v 𝑸 f + 𝑸 v 𝑸
52 50 51 genpprecl A 𝑷 C 𝑷 z A x C z + 𝑸 x A + 𝑷 C
53 49 52 sylan2i A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B z + 𝑸 x A + 𝑷 C
54 53 exp4d A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B z + 𝑸 x A + 𝑷 C
55 54 imp42 A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B z + 𝑸 x A + 𝑷 C
56 eleq1 z + 𝑸 x = w z + 𝑸 x A + 𝑷 C w A + 𝑷 C
57 56 ad2antrl A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B z + 𝑸 x A + 𝑷 C w A + 𝑷 C
58 55 57 mpbid A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B w A + 𝑷 C
59 58 exp32 A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A z + 𝑸 x = w w + 𝑸 v B w A + 𝑷 C
60 59 exlimdv A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A x z + 𝑸 x = w w + 𝑸 v B w A + 𝑷 C
61 30 60 syl6d A 𝑷 C 𝑷 z A ¬ z + 𝑸 v A w 𝑸 ¬ w A w + 𝑸 v B w A + 𝑷 C
62 24 61 rexlimddv A 𝑷 C 𝑷 w 𝑸 ¬ w A w + 𝑸 v B w A + 𝑷 C
63 62 com14 w + 𝑸 v B w 𝑸 ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
64 63 adantl B 𝑷 w + 𝑸 v B w 𝑸 ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
65 21 64 mpd B 𝑷 w + 𝑸 v B ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
66 65 ex B 𝑷 w + 𝑸 v B ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
67 66 exlimdv B 𝑷 v w + 𝑸 v B ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
68 14 67 syld B 𝑷 w B ¬ w A A 𝑷 C 𝑷 w A + 𝑷 C
69 68 com4t ¬ w A A 𝑷 C 𝑷 B 𝑷 w B w A + 𝑷 C
70 69 expd ¬ w A A 𝑷 C 𝑷 B 𝑷 w B w A + 𝑷 C
71 12 70 pm2.61i A 𝑷 C 𝑷 B 𝑷 w B w A + 𝑷 C
72 2 71 syl5 A 𝑷 B 𝑷 A B B 𝑷 w B w A + 𝑷 C
73 72 expd A 𝑷 B 𝑷 A B B 𝑷 w B w A + 𝑷 C
74 73 com34 A 𝑷 B 𝑷 B 𝑷 A B w B w A + 𝑷 C
75 74 pm2.43d A 𝑷 B 𝑷 A B w B w A + 𝑷 C
76 75 imp31 A 𝑷 B 𝑷 A B w B w A + 𝑷 C
77 76 ssrdv A 𝑷 B 𝑷 A B B A + 𝑷 C