Metamath Proof Explorer


Theorem pssssd

Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypothesis pssssd.1 φAB
Assertion pssssd φAB

Proof

Step Hyp Ref Expression
1 pssssd.1 φAB
2 pssss ABAB
3 1 2 syl φAB