Metamath Proof Explorer


Theorem pssssd

Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypothesis pssssd.1 ( 𝜑𝐴𝐵 )
Assertion pssssd ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 pssssd.1 ( 𝜑𝐴𝐵 )
2 pssss ( 𝐴𝐵𝐴𝐵 )
3 1 2 syl ( 𝜑𝐴𝐵 )