Description: Deduce subclass from proper subclass. (Contributed by NM, 29-Feb-1996)
Ref | Expression | ||
---|---|---|---|
Hypothesis | pssssd.1 | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) | |
Assertion | pssssd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssssd.1 | ⊢ ( 𝜑 → 𝐴 ⊊ 𝐵 ) | |
2 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
3 | 1 2 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |