| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltexprlem.1 |
|- C = { x | E. y ( -. y e. A /\ ( y +Q x ) e. B ) } |
| 2 |
1
|
ltexprlem5 |
|- ( ( B e. P. /\ A C. B ) -> C e. P. ) |
| 3 |
|
ltaddpr |
|- ( ( A e. P. /\ C e. P. ) -> A |
| 4 |
|
addclpr |
|- ( ( A e. P. /\ C e. P. ) -> ( A +P. C ) e. P. ) |
| 5 |
|
ltprord |
|- ( ( A e. P. /\ ( A +P. C ) e. P. ) -> ( A A C. ( A +P. C ) ) ) |
| 6 |
4 5
|
syldan |
|- ( ( A e. P. /\ C e. P. ) -> ( A A C. ( A +P. C ) ) ) |
| 7 |
3 6
|
mpbid |
|- ( ( A e. P. /\ C e. P. ) -> A C. ( A +P. C ) ) |
| 8 |
7
|
pssssd |
|- ( ( A e. P. /\ C e. P. ) -> A C_ ( A +P. C ) ) |
| 9 |
8
|
sseld |
|- ( ( A e. P. /\ C e. P. ) -> ( w e. A -> w e. ( A +P. C ) ) ) |
| 10 |
9
|
2a1d |
|- ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> ( w e. A -> w e. ( A +P. C ) ) ) ) ) |
| 11 |
10
|
com4r |
|- ( w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 12 |
11
|
expd |
|- ( w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 13 |
|
prnmadd |
|- ( ( B e. P. /\ w e. B ) -> E. v ( w +Q v ) e. B ) |
| 14 |
13
|
ex |
|- ( B e. P. -> ( w e. B -> E. v ( w +Q v ) e. B ) ) |
| 15 |
|
elprnq |
|- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w +Q v ) e. Q. ) |
| 16 |
|
addnqf |
|- +Q : ( Q. X. Q. ) --> Q. |
| 17 |
16
|
fdmi |
|- dom +Q = ( Q. X. Q. ) |
| 18 |
|
0nnq |
|- -. (/) e. Q. |
| 19 |
17 18
|
ndmovrcl |
|- ( ( w +Q v ) e. Q. -> ( w e. Q. /\ v e. Q. ) ) |
| 20 |
15 19
|
syl |
|- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. /\ v e. Q. ) ) |
| 21 |
20
|
simpld |
|- ( ( B e. P. /\ ( w +Q v ) e. B ) -> w e. Q. ) |
| 22 |
|
vex |
|- v e. _V |
| 23 |
22
|
prlem934 |
|- ( A e. P. -> E. z e. A -. ( z +Q v ) e. A ) |
| 24 |
23
|
adantr |
|- ( ( A e. P. /\ C e. P. ) -> E. z e. A -. ( z +Q v ) e. A ) |
| 25 |
|
prub |
|- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> z |
| 26 |
|
ltexnq |
|- ( w e. Q. -> ( z E. x ( z +Q x ) = w ) ) |
| 27 |
26
|
adantl |
|- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( z E. x ( z +Q x ) = w ) ) |
| 28 |
25 27
|
sylibd |
|- ( ( ( A e. P. /\ z e. A ) /\ w e. Q. ) -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) |
| 29 |
28
|
ex |
|- ( ( A e. P. /\ z e. A ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) |
| 30 |
29
|
ad2ant2r |
|- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> E. x ( z +Q x ) = w ) ) ) |
| 31 |
|
vex |
|- z e. _V |
| 32 |
|
vex |
|- x e. _V |
| 33 |
|
addcomnq |
|- ( f +Q g ) = ( g +Q f ) |
| 34 |
|
addassnq |
|- ( ( f +Q g ) +Q h ) = ( f +Q ( g +Q h ) ) |
| 35 |
31 22 32 33 34
|
caov32 |
|- ( ( z +Q v ) +Q x ) = ( ( z +Q x ) +Q v ) |
| 36 |
|
oveq1 |
|- ( ( z +Q x ) = w -> ( ( z +Q x ) +Q v ) = ( w +Q v ) ) |
| 37 |
35 36
|
eqtrid |
|- ( ( z +Q x ) = w -> ( ( z +Q v ) +Q x ) = ( w +Q v ) ) |
| 38 |
37
|
eleq1d |
|- ( ( z +Q x ) = w -> ( ( ( z +Q v ) +Q x ) e. B <-> ( w +Q v ) e. B ) ) |
| 39 |
38
|
biimpar |
|- ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( ( z +Q v ) +Q x ) e. B ) |
| 40 |
|
ovex |
|- ( z +Q v ) e. _V |
| 41 |
|
eleq1 |
|- ( y = ( z +Q v ) -> ( y e. A <-> ( z +Q v ) e. A ) ) |
| 42 |
41
|
notbid |
|- ( y = ( z +Q v ) -> ( -. y e. A <-> -. ( z +Q v ) e. A ) ) |
| 43 |
|
oveq1 |
|- ( y = ( z +Q v ) -> ( y +Q x ) = ( ( z +Q v ) +Q x ) ) |
| 44 |
43
|
eleq1d |
|- ( y = ( z +Q v ) -> ( ( y +Q x ) e. B <-> ( ( z +Q v ) +Q x ) e. B ) ) |
| 45 |
42 44
|
anbi12d |
|- ( y = ( z +Q v ) -> ( ( -. y e. A /\ ( y +Q x ) e. B ) <-> ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) ) ) |
| 46 |
40 45
|
spcev |
|- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) |
| 47 |
1
|
eqabri |
|- ( x e. C <-> E. y ( -. y e. A /\ ( y +Q x ) e. B ) ) |
| 48 |
46 47
|
sylibr |
|- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q v ) +Q x ) e. B ) -> x e. C ) |
| 49 |
39 48
|
sylan2 |
|- ( ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> x e. C ) |
| 50 |
|
df-plp |
|- +P. = ( x e. P. , w e. P. |-> { z | E. f e. x E. v e. w z = ( f +Q v ) } ) |
| 51 |
|
addclnq |
|- ( ( f e. Q. /\ v e. Q. ) -> ( f +Q v ) e. Q. ) |
| 52 |
50 51
|
genpprecl |
|- ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ x e. C ) -> ( z +Q x ) e. ( A +P. C ) ) ) |
| 53 |
49 52
|
sylan2i |
|- ( ( A e. P. /\ C e. P. ) -> ( ( z e. A /\ ( -. ( z +Q v ) e. A /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) ) -> ( z +Q x ) e. ( A +P. C ) ) ) |
| 54 |
53
|
exp4d |
|- ( ( A e. P. /\ C e. P. ) -> ( z e. A -> ( -. ( z +Q v ) e. A -> ( ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) -> ( z +Q x ) e. ( A +P. C ) ) ) ) ) |
| 55 |
54
|
imp42 |
|- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( z +Q x ) e. ( A +P. C ) ) |
| 56 |
|
eleq1 |
|- ( ( z +Q x ) = w -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) |
| 57 |
56
|
ad2antrl |
|- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> ( ( z +Q x ) e. ( A +P. C ) <-> w e. ( A +P. C ) ) ) |
| 58 |
55 57
|
mpbid |
|- ( ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) /\ ( ( z +Q x ) = w /\ ( w +Q v ) e. B ) ) -> w e. ( A +P. C ) ) |
| 59 |
58
|
exp32 |
|- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) |
| 60 |
59
|
exlimdv |
|- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( E. x ( z +Q x ) = w -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) |
| 61 |
30 60
|
syl6d |
|- ( ( ( A e. P. /\ C e. P. ) /\ ( z e. A /\ -. ( z +Q v ) e. A ) ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) |
| 62 |
24 61
|
rexlimddv |
|- ( ( A e. P. /\ C e. P. ) -> ( w e. Q. -> ( -. w e. A -> ( ( w +Q v ) e. B -> w e. ( A +P. C ) ) ) ) ) |
| 63 |
62
|
com14 |
|- ( ( w +Q v ) e. B -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 64 |
63
|
adantl |
|- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( w e. Q. -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 65 |
21 64
|
mpd |
|- ( ( B e. P. /\ ( w +Q v ) e. B ) -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) |
| 66 |
65
|
ex |
|- ( B e. P. -> ( ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 67 |
66
|
exlimdv |
|- ( B e. P. -> ( E. v ( w +Q v ) e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 68 |
14 67
|
syld |
|- ( B e. P. -> ( w e. B -> ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> w e. ( A +P. C ) ) ) ) ) |
| 69 |
68
|
com4t |
|- ( -. w e. A -> ( ( A e. P. /\ C e. P. ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 70 |
69
|
expd |
|- ( -. w e. A -> ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 71 |
12 70
|
pm2.61i |
|- ( A e. P. -> ( C e. P. -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 72 |
2 71
|
syl5 |
|- ( A e. P. -> ( ( B e. P. /\ A C. B ) -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 73 |
72
|
expd |
|- ( A e. P. -> ( B e. P. -> ( A C. B -> ( B e. P. -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 74 |
73
|
com34 |
|- ( A e. P. -> ( B e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) ) |
| 75 |
74
|
pm2.43d |
|- ( A e. P. -> ( B e. P. -> ( A C. B -> ( w e. B -> w e. ( A +P. C ) ) ) ) ) |
| 76 |
75
|
imp31 |
|- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> ( w e. B -> w e. ( A +P. C ) ) ) |
| 77 |
76
|
ssrdv |
|- ( ( ( A e. P. /\ B e. P. ) /\ A C. B ) -> B C_ ( A +P. C ) ) |