Metamath Proof Explorer


Theorem genpcd

Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
genp.2 y 𝑸 z 𝑸 y G z 𝑸
genpcd.2 A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g G h x A F B
Assertion genpcd A 𝑷 B 𝑷 f A F B x < 𝑸 f x A F B

Proof

Step Hyp Ref Expression
1 genp.1 F = w 𝑷 , v 𝑷 x | y w z v x = y G z
2 genp.2 y 𝑸 z 𝑸 y G z 𝑸
3 genpcd.2 A 𝑷 g A B 𝑷 h B x 𝑸 x < 𝑸 g G h x A F B
4 ltrelnq < 𝑸 𝑸 × 𝑸
5 4 brel x < 𝑸 f x 𝑸 f 𝑸
6 5 simpld x < 𝑸 f x 𝑸
7 1 2 genpelv A 𝑷 B 𝑷 f A F B g A h B f = g G h
8 7 adantr A 𝑷 B 𝑷 x 𝑸 f A F B g A h B f = g G h
9 breq2 f = g G h x < 𝑸 f x < 𝑸 g G h
10 9 biimpd f = g G h x < 𝑸 f x < 𝑸 g G h
11 10 3 sylan9r A 𝑷 g A B 𝑷 h B x 𝑸 f = g G h x < 𝑸 f x A F B
12 11 exp31 A 𝑷 g A B 𝑷 h B x 𝑸 f = g G h x < 𝑸 f x A F B
13 12 an4s A 𝑷 B 𝑷 g A h B x 𝑸 f = g G h x < 𝑸 f x A F B
14 13 impancom A 𝑷 B 𝑷 x 𝑸 g A h B f = g G h x < 𝑸 f x A F B
15 14 rexlimdvv A 𝑷 B 𝑷 x 𝑸 g A h B f = g G h x < 𝑸 f x A F B
16 8 15 sylbid A 𝑷 B 𝑷 x 𝑸 f A F B x < 𝑸 f x A F B
17 16 ex A 𝑷 B 𝑷 x 𝑸 f A F B x < 𝑸 f x A F B
18 6 17 syl5 A 𝑷 B 𝑷 x < 𝑸 f f A F B x < 𝑸 f x A F B
19 18 com34 A 𝑷 B 𝑷 x < 𝑸 f x < 𝑸 f f A F B x A F B
20 19 pm2.43d A 𝑷 B 𝑷 x < 𝑸 f f A F B x A F B
21 20 com23 A 𝑷 B 𝑷 f A F B x < 𝑸 f x A F B