Metamath Proof Explorer


Theorem genpcd

Description: Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Hypotheses genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
genpcd.2 ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) )
Assertion genpcd ( ( 𝐴P𝐵P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 genp.1 𝐹 = ( 𝑤P , 𝑣P ↦ { 𝑥 ∣ ∃ 𝑦𝑤𝑧𝑣 𝑥 = ( 𝑦 𝐺 𝑧 ) } )
2 genp.2 ( ( 𝑦Q𝑧Q ) → ( 𝑦 𝐺 𝑧 ) ∈ Q )
3 genpcd.2 ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) → ( 𝑥 <Q ( 𝑔 𝐺 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) )
4 ltrelnq <Q ⊆ ( Q × Q )
5 4 brel ( 𝑥 <Q 𝑓 → ( 𝑥Q𝑓Q ) )
6 5 simpld ( 𝑥 <Q 𝑓𝑥Q )
7 1 2 genpelv ( ( 𝐴P𝐵P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) ) )
8 7 adantr ( ( ( 𝐴P𝐵P ) ∧ 𝑥Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) ↔ ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) ) )
9 breq2 ( 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 <Q ( 𝑔 𝐺 ) ) )
10 9 biimpd ( 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 <Q ( 𝑔 𝐺 ) ) )
11 10 3 sylan9r ( ( ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) ∧ 𝑥Q ) ∧ 𝑓 = ( 𝑔 𝐺 ) ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) )
12 11 exp31 ( ( ( 𝐴P𝑔𝐴 ) ∧ ( 𝐵P𝐵 ) ) → ( 𝑥Q → ( 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
13 12 an4s ( ( ( 𝐴P𝐵P ) ∧ ( 𝑔𝐴𝐵 ) ) → ( 𝑥Q → ( 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
14 13 impancom ( ( ( 𝐴P𝐵P ) ∧ 𝑥Q ) → ( ( 𝑔𝐴𝐵 ) → ( 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
15 14 rexlimdvv ( ( ( 𝐴P𝐵P ) ∧ 𝑥Q ) → ( ∃ 𝑔𝐴𝐵 𝑓 = ( 𝑔 𝐺 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) )
16 8 15 sylbid ( ( ( 𝐴P𝐵P ) ∧ 𝑥Q ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) )
17 16 ex ( ( 𝐴P𝐵P ) → ( 𝑥Q → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
18 6 17 syl5 ( ( 𝐴P𝐵P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
19 18 com34 ( ( 𝐴P𝐵P ) → ( 𝑥 <Q 𝑓 → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) ) )
20 19 pm2.43d ( ( 𝐴P𝐵P ) → ( 𝑥 <Q 𝑓 → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → 𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) )
21 20 com23 ( ( 𝐴P𝐵P ) → ( 𝑓 ∈ ( 𝐴 𝐹 𝐵 ) → ( 𝑥 <Q 𝑓𝑥 ∈ ( 𝐴 𝐹 𝐵 ) ) ) )