Metamath Proof Explorer


Theorem axaddass

Description: Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass be used later. Instead, use addass . (Contributed by NM, 2-Sep-1995) (New usage is discouraged.)

Ref Expression
Assertion axaddass ABCA+B+C=A+B+C

Proof

Step Hyp Ref Expression
1 dfcnqs =𝑹×𝑹/E-1
2 addcnsrec x𝑹y𝑹z𝑹w𝑹xyE-1+zwE-1=x+𝑹zy+𝑹wE-1
3 addcnsrec z𝑹w𝑹v𝑹u𝑹zwE-1+vuE-1=z+𝑹vw+𝑹uE-1
4 addcnsrec x+𝑹z𝑹y+𝑹w𝑹v𝑹u𝑹x+𝑹zy+𝑹wE-1+vuE-1=x+𝑹z+𝑹vy+𝑹w+𝑹uE-1
5 addcnsrec x𝑹y𝑹z+𝑹v𝑹w+𝑹u𝑹xyE-1+z+𝑹vw+𝑹uE-1=x+𝑹z+𝑹vy+𝑹w+𝑹uE-1
6 addclsr x𝑹z𝑹x+𝑹z𝑹
7 addclsr y𝑹w𝑹y+𝑹w𝑹
8 6 7 anim12i x𝑹z𝑹y𝑹w𝑹x+𝑹z𝑹y+𝑹w𝑹
9 8 an4s x𝑹y𝑹z𝑹w𝑹x+𝑹z𝑹y+𝑹w𝑹
10 addclsr z𝑹v𝑹z+𝑹v𝑹
11 addclsr w𝑹u𝑹w+𝑹u𝑹
12 10 11 anim12i z𝑹v𝑹w𝑹u𝑹z+𝑹v𝑹w+𝑹u𝑹
13 12 an4s z𝑹w𝑹v𝑹u𝑹z+𝑹v𝑹w+𝑹u𝑹
14 addasssr x+𝑹z+𝑹v=x+𝑹z+𝑹v
15 addasssr y+𝑹w+𝑹u=y+𝑹w+𝑹u
16 1 2 3 4 5 9 13 14 15 ecovass ABCA+B+C=A+B+C