Metamath Proof Explorer


Theorem nqpr

Description: The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion nqpr A𝑸x|x<𝑸A𝑷

Proof

Step Hyp Ref Expression
1 nsmallnq A𝑸xx<𝑸A
2 abn0 x|x<𝑸Axx<𝑸A
3 1 2 sylibr A𝑸x|x<𝑸A
4 0pss x|x<𝑸Ax|x<𝑸A
5 3 4 sylibr A𝑸x|x<𝑸A
6 ltrelnq <𝑸𝑸×𝑸
7 6 brel x<𝑸Ax𝑸A𝑸
8 7 simpld x<𝑸Ax𝑸
9 8 abssi x|x<𝑸A𝑸
10 ltsonq <𝑸Or𝑸
11 10 6 soirri ¬A<𝑸A
12 breq1 x=Ax<𝑸AA<𝑸A
13 12 elabg A𝑸Ax|x<𝑸AA<𝑸A
14 11 13 mtbiri A𝑸¬Ax|x<𝑸A
15 14 ancli A𝑸A𝑸¬Ax|x<𝑸A
16 ssnelpss x|x<𝑸A𝑸A𝑸¬Ax|x<𝑸Ax|x<𝑸A𝑸
17 9 15 16 mpsyl A𝑸x|x<𝑸A𝑸
18 vex yV
19 breq1 x=yx<𝑸Ay<𝑸A
20 18 19 elab yx|x<𝑸Ay<𝑸A
21 10 6 sotri z<𝑸yy<𝑸Az<𝑸A
22 21 expcom y<𝑸Az<𝑸yz<𝑸A
23 22 adantl A𝑸y<𝑸Az<𝑸yz<𝑸A
24 vex zV
25 breq1 x=zx<𝑸Az<𝑸A
26 24 25 elab zx|x<𝑸Az<𝑸A
27 23 26 imbitrrdi A𝑸y<𝑸Az<𝑸yzx|x<𝑸A
28 27 alrimiv A𝑸y<𝑸Azz<𝑸yzx|x<𝑸A
29 ltbtwnnq y<𝑸Azy<𝑸zz<𝑸A
30 26 anbi2i y<𝑸zzx|x<𝑸Ay<𝑸zz<𝑸A
31 30 biimpri y<𝑸zz<𝑸Ay<𝑸zzx|x<𝑸A
32 31 ancomd y<𝑸zz<𝑸Azx|x<𝑸Ay<𝑸z
33 32 eximi zy<𝑸zz<𝑸Azzx|x<𝑸Ay<𝑸z
34 29 33 sylbi y<𝑸Azzx|x<𝑸Ay<𝑸z
35 34 adantl A𝑸y<𝑸Azzx|x<𝑸Ay<𝑸z
36 df-rex zx|x<𝑸Ay<𝑸zzzx|x<𝑸Ay<𝑸z
37 35 36 sylibr A𝑸y<𝑸Azx|x<𝑸Ay<𝑸z
38 28 37 jca A𝑸y<𝑸Azz<𝑸yzx|x<𝑸Azx|x<𝑸Ay<𝑸z
39 20 38 sylan2b A𝑸yx|x<𝑸Azz<𝑸yzx|x<𝑸Azx|x<𝑸Ay<𝑸z
40 39 ralrimiva A𝑸yx|x<𝑸Azz<𝑸yzx|x<𝑸Azx|x<𝑸Ay<𝑸z
41 elnp x|x<𝑸A𝑷x|x<𝑸Ax|x<𝑸A𝑸yx|x<𝑸Azz<𝑸yzx|x<𝑸Azx|x<𝑸Ay<𝑸z
42 5 17 40 41 syl21anbrc A𝑸x|x<𝑸A𝑷