Metamath Proof Explorer


Theorem abn0

Description: Nonempty class abstraction. See also ab0 . (Contributed by NM, 26-Dec-1996) (Proof shortened by Mario Carneiro, 11-Nov-2016) Avoid df-clel , ax-8 . (Revised by Gino Giotto, 30-Aug-2024)

Ref Expression
Assertion abn0 x|φxφ

Proof

Step Hyp Ref Expression
1 ab0 x|φ=x¬φ
2 1 notbii ¬x|φ=¬x¬φ
3 df-ne x|φ¬x|φ=
4 df-ex xφ¬x¬φ
5 2 3 4 3bitr4i x|φxφ