Description: Lemma for mulerpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | mulerpqlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xp1st | |
|
2 | 1 | 3ad2ant1 | |
3 | xp1st | |
|
4 | 3 | 3ad2ant3 | |
5 | mulclpi | |
|
6 | 2 4 5 | syl2anc | |
7 | xp2nd | |
|
8 | 7 | 3ad2ant1 | |
9 | xp2nd | |
|
10 | 9 | 3ad2ant3 | |
11 | mulclpi | |
|
12 | 8 10 11 | syl2anc | |
13 | xp1st | |
|
14 | 13 | 3ad2ant2 | |
15 | mulclpi | |
|
16 | 14 4 15 | syl2anc | |
17 | xp2nd | |
|
18 | 17 | 3ad2ant2 | |
19 | mulclpi | |
|
20 | 18 10 19 | syl2anc | |
21 | enqbreq | |
|
22 | 6 12 16 20 21 | syl22anc | |
23 | mulpipq2 | |
|
24 | 23 | 3adant2 | |
25 | mulpipq2 | |
|
26 | 25 | 3adant1 | |
27 | 24 26 | breq12d | |
28 | enqbreq2 | |
|
29 | 28 | 3adant3 | |
30 | mulclpi | |
|
31 | 4 10 30 | syl2anc | |
32 | mulclpi | |
|
33 | 2 18 32 | syl2anc | |
34 | mulcanpi | |
|
35 | 31 33 34 | syl2anc | |
36 | mulcompi | |
|
37 | fvex | |
|
38 | fvex | |
|
39 | fvex | |
|
40 | mulcompi | |
|
41 | mulasspi | |
|
42 | fvex | |
|
43 | 37 38 39 40 41 42 | caov4 | |
44 | 36 43 | eqtri | |
45 | mulcompi | |
|
46 | fvex | |
|
47 | fvex | |
|
48 | 46 47 39 40 41 42 | caov4 | |
49 | mulcompi | |
|
50 | 45 48 49 | 3eqtri | |
51 | 44 50 | eqeq12i | |
52 | 51 | a1i | |
53 | 29 35 52 | 3bitr2d | |
54 | 22 27 53 | 3bitr4rd | |