Metamath Proof Explorer


Theorem mulerpqlem

Description: Lemma for mulerpq . (Contributed by Mario Carneiro, 8-May-2013) (New usage is discouraged.)

Ref Expression
Assertion mulerpqlem A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A~𝑸BA𝑝𝑸C~𝑸B𝑝𝑸C

Proof

Step Hyp Ref Expression
1 xp1st A𝑵×𝑵1stA𝑵
2 1 3ad2ant1 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stA𝑵
3 xp1st C𝑵×𝑵1stC𝑵
4 3 3ad2ant3 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stC𝑵
5 mulclpi 1stA𝑵1stC𝑵1stA𝑵1stC𝑵
6 2 4 5 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stA𝑵1stC𝑵
7 xp2nd A𝑵×𝑵2ndA𝑵
8 7 3ad2ant1 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵2ndA𝑵
9 xp2nd C𝑵×𝑵2ndC𝑵
10 9 3ad2ant3 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵2ndC𝑵
11 mulclpi 2ndA𝑵2ndC𝑵2ndA𝑵2ndC𝑵
12 8 10 11 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵2ndA𝑵2ndC𝑵
13 xp1st B𝑵×𝑵1stB𝑵
14 13 3ad2ant2 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stB𝑵
15 mulclpi 1stB𝑵1stC𝑵1stB𝑵1stC𝑵
16 14 4 15 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stB𝑵1stC𝑵
17 xp2nd B𝑵×𝑵2ndB𝑵
18 17 3ad2ant2 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵2ndB𝑵
19 mulclpi 2ndB𝑵2ndC𝑵2ndB𝑵2ndC𝑵
20 18 10 19 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵2ndB𝑵2ndC𝑵
21 enqbreq 1stA𝑵1stC𝑵2ndA𝑵2ndC𝑵1stB𝑵1stC𝑵2ndB𝑵2ndC𝑵1stA𝑵1stC2ndA𝑵2ndC~𝑸1stB𝑵1stC2ndB𝑵2ndC1stA𝑵1stC𝑵2ndB𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
22 6 12 16 20 21 syl22anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stA𝑵1stC2ndA𝑵2ndC~𝑸1stB𝑵1stC2ndB𝑵2ndC1stA𝑵1stC𝑵2ndB𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
23 mulpipq2 A𝑵×𝑵C𝑵×𝑵A𝑝𝑸C=1stA𝑵1stC2ndA𝑵2ndC
24 23 3adant2 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A𝑝𝑸C=1stA𝑵1stC2ndA𝑵2ndC
25 mulpipq2 B𝑵×𝑵C𝑵×𝑵B𝑝𝑸C=1stB𝑵1stC2ndB𝑵2ndC
26 25 3adant1 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵B𝑝𝑸C=1stB𝑵1stC2ndB𝑵2ndC
27 24 26 breq12d A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A𝑝𝑸C~𝑸B𝑝𝑸C1stA𝑵1stC2ndA𝑵2ndC~𝑸1stB𝑵1stC2ndB𝑵2ndC
28 enqbreq2 A𝑵×𝑵B𝑵×𝑵A~𝑸B1stA𝑵2ndB=1stB𝑵2ndA
29 28 3adant3 A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A~𝑸B1stA𝑵2ndB=1stB𝑵2ndA
30 mulclpi 1stC𝑵2ndC𝑵1stC𝑵2ndC𝑵
31 4 10 30 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stC𝑵2ndC𝑵
32 mulclpi 1stA𝑵2ndB𝑵1stA𝑵2ndB𝑵
33 2 18 32 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stA𝑵2ndB𝑵
34 mulcanpi 1stC𝑵2ndC𝑵1stA𝑵2ndB𝑵1stC𝑵2ndC𝑵1stA𝑵2ndB=1stC𝑵2ndC𝑵1stB𝑵2ndA1stA𝑵2ndB=1stB𝑵2ndA
35 31 33 34 syl2anc A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stC𝑵2ndC𝑵1stA𝑵2ndB=1stC𝑵2ndC𝑵1stB𝑵2ndA1stA𝑵2ndB=1stB𝑵2ndA
36 mulcompi 1stC𝑵2ndC𝑵1stA𝑵2ndB=1stA𝑵2ndB𝑵1stC𝑵2ndC
37 fvex 1stAV
38 fvex 2ndBV
39 fvex 1stCV
40 mulcompi x𝑵y=y𝑵x
41 mulasspi x𝑵y𝑵z=x𝑵y𝑵z
42 fvex 2ndCV
43 37 38 39 40 41 42 caov4 1stA𝑵2ndB𝑵1stC𝑵2ndC=1stA𝑵1stC𝑵2ndB𝑵2ndC
44 36 43 eqtri 1stC𝑵2ndC𝑵1stA𝑵2ndB=1stA𝑵1stC𝑵2ndB𝑵2ndC
45 mulcompi 1stC𝑵2ndC𝑵1stB𝑵2ndA=1stB𝑵2ndA𝑵1stC𝑵2ndC
46 fvex 1stBV
47 fvex 2ndAV
48 46 47 39 40 41 42 caov4 1stB𝑵2ndA𝑵1stC𝑵2ndC=1stB𝑵1stC𝑵2ndA𝑵2ndC
49 mulcompi 1stB𝑵1stC𝑵2ndA𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
50 45 48 49 3eqtri 1stC𝑵2ndC𝑵1stB𝑵2ndA=2ndA𝑵2ndC𝑵1stB𝑵1stC
51 44 50 eqeq12i 1stC𝑵2ndC𝑵1stA𝑵2ndB=1stC𝑵2ndC𝑵1stB𝑵2ndA1stA𝑵1stC𝑵2ndB𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
52 51 a1i A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵1stC𝑵2ndC𝑵1stA𝑵2ndB=1stC𝑵2ndC𝑵1stB𝑵2ndA1stA𝑵1stC𝑵2ndB𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
53 29 35 52 3bitr2d A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A~𝑸B1stA𝑵1stC𝑵2ndB𝑵2ndC=2ndA𝑵2ndC𝑵1stB𝑵1stC
54 22 27 53 3bitr4rd A𝑵×𝑵B𝑵×𝑵C𝑵×𝑵A~𝑸BA𝑝𝑸C~𝑸B𝑝𝑸C