| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xp1st |  |-  ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` A ) e. N. ) | 
						
							| 3 |  | xp1st |  |-  ( C e. ( N. X. N. ) -> ( 1st ` C ) e. N. ) | 
						
							| 4 | 3 | 3ad2ant3 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` C ) e. N. ) | 
						
							| 5 |  | mulclpi |  |-  ( ( ( 1st ` A ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) | 
						
							| 6 | 2 4 5 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. ) | 
						
							| 7 |  | xp2nd |  |-  ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) | 
						
							| 8 | 7 | 3ad2ant1 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` A ) e. N. ) | 
						
							| 9 |  | xp2nd |  |-  ( C e. ( N. X. N. ) -> ( 2nd ` C ) e. N. ) | 
						
							| 10 | 9 | 3ad2ant3 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` C ) e. N. ) | 
						
							| 11 |  | mulclpi |  |-  ( ( ( 2nd ` A ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 12 | 8 10 11 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 13 |  | xp1st |  |-  ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) | 
						
							| 14 | 13 | 3ad2ant2 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 1st ` B ) e. N. ) | 
						
							| 15 |  | mulclpi |  |-  ( ( ( 1st ` B ) e. N. /\ ( 1st ` C ) e. N. ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) | 
						
							| 16 | 14 4 15 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. ) | 
						
							| 17 |  | xp2nd |  |-  ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) | 
						
							| 18 | 17 | 3ad2ant2 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( 2nd ` B ) e. N. ) | 
						
							| 19 |  | mulclpi |  |-  ( ( ( 2nd ` B ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 20 | 18 10 19 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 21 |  | enqbreq |  |-  ( ( ( ( ( 1st ` A ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` A ) .N ( 2nd ` C ) ) e. N. ) /\ ( ( ( 1st ` B ) .N ( 1st ` C ) ) e. N. /\ ( ( 2nd ` B ) .N ( 2nd ` C ) ) e. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) | 
						
							| 22 | 6 12 16 20 21 | syl22anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) | 
						
							| 23 |  | mulpipq2 |  |-  ( ( A e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) | 
						
							| 24 | 23 | 3adant2 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A .pQ C ) = <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ) | 
						
							| 25 |  | mulpipq2 |  |-  ( ( B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) | 
						
							| 26 | 25 | 3adant1 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( B .pQ C ) = <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) | 
						
							| 27 | 24 26 | breq12d |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( A .pQ C ) ~Q ( B .pQ C ) <-> <. ( ( 1st ` A ) .N ( 1st ` C ) ) , ( ( 2nd ` A ) .N ( 2nd ` C ) ) >. ~Q <. ( ( 1st ` B ) .N ( 1st ` C ) ) , ( ( 2nd ` B ) .N ( 2nd ` C ) ) >. ) ) | 
						
							| 28 |  | enqbreq2 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) | 
						
							| 29 | 28 | 3adant3 |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) | 
						
							| 30 |  | mulclpi |  |-  ( ( ( 1st ` C ) e. N. /\ ( 2nd ` C ) e. N. ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 31 | 4 10 30 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. ) | 
						
							| 32 |  | mulclpi |  |-  ( ( ( 1st ` A ) e. N. /\ ( 2nd ` B ) e. N. ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) | 
						
							| 33 | 2 18 32 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) | 
						
							| 34 |  | mulcanpi |  |-  ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) e. N. /\ ( ( 1st ` A ) .N ( 2nd ` B ) ) e. N. ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) | 
						
							| 35 | 31 33 34 | syl2anc |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) | 
						
							| 36 |  | mulcompi |  |-  ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) | 
						
							| 37 |  | fvex |  |-  ( 1st ` A ) e. _V | 
						
							| 38 |  | fvex |  |-  ( 2nd ` B ) e. _V | 
						
							| 39 |  | fvex |  |-  ( 1st ` C ) e. _V | 
						
							| 40 |  | mulcompi |  |-  ( x .N y ) = ( y .N x ) | 
						
							| 41 |  | mulasspi |  |-  ( ( x .N y ) .N z ) = ( x .N ( y .N z ) ) | 
						
							| 42 |  | fvex |  |-  ( 2nd ` C ) e. _V | 
						
							| 43 | 37 38 39 40 41 42 | caov4 |  |-  ( ( ( 1st ` A ) .N ( 2nd ` B ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) | 
						
							| 44 | 36 43 | eqtri |  |-  ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) | 
						
							| 45 |  | mulcompi |  |-  ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) | 
						
							| 46 |  | fvex |  |-  ( 1st ` B ) e. _V | 
						
							| 47 |  | fvex |  |-  ( 2nd ` A ) e. _V | 
						
							| 48 | 46 47 39 40 41 42 | caov4 |  |-  ( ( ( 1st ` B ) .N ( 2nd ` A ) ) .N ( ( 1st ` C ) .N ( 2nd ` C ) ) ) = ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) | 
						
							| 49 |  | mulcompi |  |-  ( ( ( 1st ` B ) .N ( 1st ` C ) ) .N ( ( 2nd ` A ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) | 
						
							| 50 | 45 48 49 | 3eqtri |  |-  ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) | 
						
							| 51 | 44 50 | eqeq12i |  |-  ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) | 
						
							| 52 | 51 | a1i |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` A ) .N ( 2nd ` B ) ) ) = ( ( ( 1st ` C ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 2nd ` A ) ) ) <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) | 
						
							| 53 | 29 35 52 | 3bitr2d |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( ( 1st ` A ) .N ( 1st ` C ) ) .N ( ( 2nd ` B ) .N ( 2nd ` C ) ) ) = ( ( ( 2nd ` A ) .N ( 2nd ` C ) ) .N ( ( 1st ` B ) .N ( 1st ` C ) ) ) ) ) | 
						
							| 54 | 22 27 53 | 3bitr4rd |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) /\ C e. ( N. X. N. ) ) -> ( A ~Q B <-> ( A .pQ C ) ~Q ( B .pQ C ) ) ) |