| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1st2nd2 |  |-  ( A e. ( N. X. N. ) -> A = <. ( 1st ` A ) , ( 2nd ` A ) >. ) | 
						
							| 2 |  | 1st2nd2 |  |-  ( B e. ( N. X. N. ) -> B = <. ( 1st ` B ) , ( 2nd ` B ) >. ) | 
						
							| 3 | 1 2 | breqan12d |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. ) ) | 
						
							| 4 |  | xp1st |  |-  ( A e. ( N. X. N. ) -> ( 1st ` A ) e. N. ) | 
						
							| 5 |  | xp2nd |  |-  ( A e. ( N. X. N. ) -> ( 2nd ` A ) e. N. ) | 
						
							| 6 | 4 5 | jca |  |-  ( A e. ( N. X. N. ) -> ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) ) | 
						
							| 7 |  | xp1st |  |-  ( B e. ( N. X. N. ) -> ( 1st ` B ) e. N. ) | 
						
							| 8 |  | xp2nd |  |-  ( B e. ( N. X. N. ) -> ( 2nd ` B ) e. N. ) | 
						
							| 9 | 7 8 | jca |  |-  ( B e. ( N. X. N. ) -> ( ( 1st ` B ) e. N. /\ ( 2nd ` B ) e. N. ) ) | 
						
							| 10 |  | enqbreq |  |-  ( ( ( ( 1st ` A ) e. N. /\ ( 2nd ` A ) e. N. ) /\ ( ( 1st ` B ) e. N. /\ ( 2nd ` B ) e. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) ) ) | 
						
							| 11 | 6 9 10 | syl2an |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( <. ( 1st ` A ) , ( 2nd ` A ) >. ~Q <. ( 1st ` B ) , ( 2nd ` B ) >. <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) ) ) | 
						
							| 12 |  | mulcompi |  |-  ( ( 2nd ` A ) .N ( 1st ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) | 
						
							| 13 | 12 | eqeq2i |  |-  ( ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) | 
						
							| 14 | 13 | a1i |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 2nd ` A ) .N ( 1st ` B ) ) <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) | 
						
							| 15 | 3 11 14 | 3bitrd |  |-  ( ( A e. ( N. X. N. ) /\ B e. ( N. X. N. ) ) -> ( A ~Q B <-> ( ( 1st ` A ) .N ( 2nd ` B ) ) = ( ( 1st ` B ) .N ( 2nd ` A ) ) ) ) |