Metamath Proof Explorer


Theorem 3bitrd

Description: Deduction from transitivity of biconditional. (Contributed by NM, 13-Aug-1999)

Ref Expression
Hypotheses 3bitrd.1
|- ( ph -> ( ps <-> ch ) )
3bitrd.2
|- ( ph -> ( ch <-> th ) )
3bitrd.3
|- ( ph -> ( th <-> ta ) )
Assertion 3bitrd
|- ( ph -> ( ps <-> ta ) )

Proof

Step Hyp Ref Expression
1 3bitrd.1
 |-  ( ph -> ( ps <-> ch ) )
2 3bitrd.2
 |-  ( ph -> ( ch <-> th ) )
3 3bitrd.3
 |-  ( ph -> ( th <-> ta ) )
4 1 2 bitrd
 |-  ( ph -> ( ps <-> th ) )
5 4 3 bitrd
 |-  ( ph -> ( ps <-> ta ) )