Metamath Proof Explorer


Theorem enqbreq

Description: Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995) (New usage is discouraged.)

Ref Expression
Assertion enqbreq
|- ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. ~Q <. C , D >. <-> ( A .N D ) = ( B .N C ) ) )

Proof

Step Hyp Ref Expression
1 df-enq
 |-  ~Q = { <. x , y >. | ( ( x e. ( N. X. N. ) /\ y e. ( N. X. N. ) ) /\ E. z E. w E. v E. u ( ( x = <. z , w >. /\ y = <. v , u >. ) /\ ( z .N u ) = ( w .N v ) ) ) }
2 1 ecopoveq
 |-  ( ( ( A e. N. /\ B e. N. ) /\ ( C e. N. /\ D e. N. ) ) -> ( <. A , B >. ~Q <. C , D >. <-> ( A .N D ) = ( B .N C ) ) )