Metamath Proof Explorer


Theorem eqeq12i

Description: A useful inference for substituting definitions into an equality. (Contributed by NM, 15-Jul-1993) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 20-Nov-2019)

Ref Expression
Hypotheses eqeq12i.1 A=B
eqeq12i.2 C=D
Assertion eqeq12i A=CB=D

Proof

Step Hyp Ref Expression
1 eqeq12i.1 A=B
2 eqeq12i.2 C=D
3 1 eqeq1i A=CB=C
4 2 eqeq2i B=CB=D
5 3 4 bitri A=CB=D