Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | addsrmo | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrer | |
|
2 | 1 | a1i | |
3 | prsrlem1 | |
|
4 | addcmpblnr | |
|
5 | 4 | imp | |
6 | 3 5 | syl | |
7 | 2 6 | erthi | |
8 | 7 | adantrlr | |
9 | 8 | adantrrr | |
10 | simprlr | |
|
11 | simprrr | |
|
12 | 9 10 11 | 3eqtr4d | |
13 | 12 | expr | |
14 | 13 | exlimdvv | |
15 | 14 | exlimdvv | |
16 | 15 | ex | |
17 | 16 | exlimdvv | |
18 | 17 | exlimdvv | |
19 | 18 | impd | |
20 | 19 | alrimivv | |
21 | opeq12 | |
|
22 | 21 | eceq1d | |
23 | 22 | eqeq2d | |
24 | 23 | anbi1d | |
25 | simpl | |
|
26 | 25 | oveq1d | |
27 | simpr | |
|
28 | 27 | oveq1d | |
29 | 26 28 | opeq12d | |
30 | 29 | eceq1d | |
31 | 30 | eqeq2d | |
32 | 24 31 | anbi12d | |
33 | opeq12 | |
|
34 | 33 | eceq1d | |
35 | 34 | eqeq2d | |
36 | 35 | anbi2d | |
37 | simpl | |
|
38 | 37 | oveq2d | |
39 | simpr | |
|
40 | 39 | oveq2d | |
41 | 38 40 | opeq12d | |
42 | 41 | eceq1d | |
43 | 42 | eqeq2d | |
44 | 36 43 | anbi12d | |
45 | 32 44 | cbvex4vw | |
46 | 45 | anbi2i | |
47 | 46 | imbi1i | |
48 | 47 | 2albii | |
49 | 20 48 | sylibr | |
50 | eqeq1 | |
|
51 | 50 | anbi2d | |
52 | 51 | 4exbidv | |
53 | 52 | mo4 | |
54 | 49 53 | sylibr | |