Metamath Proof Explorer


Theorem addsrmo

Description: There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019)

Ref Expression
Assertion addsrmo A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹*zwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹

Proof

Step Hyp Ref Expression
1 enrer ~𝑹Er𝑷×𝑷
2 1 a1i A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹~𝑹Er𝑷×𝑷
3 prsrlem1 A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w𝑷v𝑷s𝑷f𝑷u𝑷t𝑷g𝑷h𝑷w+𝑷f=v+𝑷su+𝑷h=t+𝑷g
4 addcmpblnr w𝑷v𝑷s𝑷f𝑷u𝑷t𝑷g𝑷h𝑷w+𝑷f=v+𝑷su+𝑷h=t+𝑷gw+𝑷uv+𝑷t~𝑹s+𝑷gf+𝑷h
5 4 imp w𝑷v𝑷s𝑷f𝑷u𝑷t𝑷g𝑷h𝑷w+𝑷f=v+𝑷su+𝑷h=t+𝑷gw+𝑷uv+𝑷t~𝑹s+𝑷gf+𝑷h
6 3 5 syl A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w+𝑷uv+𝑷t~𝑹s+𝑷gf+𝑷h
7 2 6 erthi A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹w+𝑷uv+𝑷t~𝑹=s+𝑷gf+𝑷h~𝑹
8 7 adantrlr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹w+𝑷uv+𝑷t~𝑹=s+𝑷gf+𝑷h~𝑹
9 8 adantrrr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹w+𝑷uv+𝑷t~𝑹=s+𝑷gf+𝑷h~𝑹
10 simprlr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=w+𝑷uv+𝑷t~𝑹
11 simprrr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹q=s+𝑷gf+𝑷h~𝑹
12 9 10 11 3eqtr4d A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
13 12 expr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
14 13 exlimdvv A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹ghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
15 14 exlimdvv A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
16 15 ex A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹A=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
17 16 exlimdvv A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹utA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
18 17 exlimdvv A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹wvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
19 18 impd A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹wvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
20 19 alrimivv A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹zqwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
21 opeq12 w=sv=fwv=sf
22 21 eceq1d w=sv=fwv~𝑹=sf~𝑹
23 22 eqeq2d w=sv=fA=wv~𝑹A=sf~𝑹
24 23 anbi1d w=sv=fA=wv~𝑹B=ut~𝑹A=sf~𝑹B=ut~𝑹
25 simpl w=sv=fw=s
26 25 oveq1d w=sv=fw+𝑷u=s+𝑷u
27 simpr w=sv=fv=f
28 27 oveq1d w=sv=fv+𝑷t=f+𝑷t
29 26 28 opeq12d w=sv=fw+𝑷uv+𝑷t=s+𝑷uf+𝑷t
30 29 eceq1d w=sv=fw+𝑷uv+𝑷t~𝑹=s+𝑷uf+𝑷t~𝑹
31 30 eqeq2d w=sv=fq=w+𝑷uv+𝑷t~𝑹q=s+𝑷uf+𝑷t~𝑹
32 24 31 anbi12d w=sv=fA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹A=sf~𝑹B=ut~𝑹q=s+𝑷uf+𝑷t~𝑹
33 opeq12 u=gt=hut=gh
34 33 eceq1d u=gt=hut~𝑹=gh~𝑹
35 34 eqeq2d u=gt=hB=ut~𝑹B=gh~𝑹
36 35 anbi2d u=gt=hA=sf~𝑹B=ut~𝑹A=sf~𝑹B=gh~𝑹
37 simpl u=gt=hu=g
38 37 oveq2d u=gt=hs+𝑷u=s+𝑷g
39 simpr u=gt=ht=h
40 39 oveq2d u=gt=hf+𝑷t=f+𝑷h
41 38 40 opeq12d u=gt=hs+𝑷uf+𝑷t=s+𝑷gf+𝑷h
42 41 eceq1d u=gt=hs+𝑷uf+𝑷t~𝑹=s+𝑷gf+𝑷h~𝑹
43 42 eqeq2d u=gt=hq=s+𝑷uf+𝑷t~𝑹q=s+𝑷gf+𝑷h~𝑹
44 36 43 anbi12d u=gt=hA=sf~𝑹B=ut~𝑹q=s+𝑷uf+𝑷t~𝑹A=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹
45 32 44 cbvex4vw wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹
46 45 anbi2i wvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹
47 46 imbi1i wvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹z=qwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
48 47 2albii zqwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹z=qzqwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹sfghA=sf~𝑹B=gh~𝑹q=s+𝑷gf+𝑷h~𝑹z=q
49 20 48 sylibr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹zqwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹z=q
50 eqeq1 z=qz=w+𝑷uv+𝑷t~𝑹q=w+𝑷uv+𝑷t~𝑹
51 50 anbi2d z=qA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹A=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹
52 51 4exbidv z=qwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹
53 52 mo4 *zwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹zqwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹wvutA=wv~𝑹B=ut~𝑹q=w+𝑷uv+𝑷t~𝑹z=q
54 49 53 sylibr A𝑷×𝑷/~𝑹B𝑷×𝑷/~𝑹*zwvutA=wv~𝑹B=ut~𝑹z=w+𝑷uv+𝑷t~𝑹