Metamath Proof Explorer


Theorem 0e0icopnf

Description: 0 is a member of ( 0 [,) +oo ) . (Contributed by David A. Wheeler, 8-Dec-2018)

Ref Expression
Assertion 0e0icopnf 00+∞

Proof

Step Hyp Ref Expression
1 0re 0
2 0le0 00
3 elrege0 00+∞000
4 1 2 3 mpbir2an 00+∞