Metamath Proof Explorer


Theorem 0grrusgr

Description: The null graph represented by an empty set is a k-regular simple graph for every k. (Contributed by AV, 26-Dec-2020)

Ref Expression
Assertion 0grrusgr k0*RegUSGraphk

Proof

Step Hyp Ref Expression
1 0ex V
2 vtxval0 Vtx=
3 iedgval0 iEdg=
4 0vtxrusgr VVtx=iEdg=k0*RegUSGraphk
5 1 2 3 4 mp3an k0*RegUSGraphk