Metamath Proof Explorer


Theorem 0psubclN

Description: The empty set is a closed projective subspace. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypothesis 0psubcl.c C=PSubClK
Assertion 0psubclN KHLC

Proof

Step Hyp Ref Expression
1 0psubcl.c C=PSubClK
2 0ss AtomsK
3 2 a1i KHLAtomsK
4 eqid 𝑃K=𝑃K
5 4 2pol0N KHL𝑃K𝑃K=
6 eqid AtomsK=AtomsK
7 6 4 1 ispsubclN KHLCAtomsK𝑃K𝑃K=
8 3 5 7 mpbir2and KHLC