Metamath Proof Explorer


Theorem 19.23v

Description: Version of 19.23 with a disjoint variable condition instead of a nonfreeness hypothesis. (Contributed by NM, 28-Jun-1998) Reduce dependencies on axioms. (Revised by Wolf Lammen, 11-Jan-2020) Remove dependency on ax-6 . (Revised by Rohan Ridenour, 15-Apr-2022)

Ref Expression
Assertion 19.23v xφψxφψ

Proof

Step Hyp Ref Expression
1 exim xφψxφxψ
2 ax5e xψψ
3 1 2 syl6 xφψxφψ
4 ax-5 ψxψ
5 4 imim2i xφψxφxψ
6 19.38 xφxψxφψ
7 5 6 syl xφψxφψ
8 3 7 impbii xφψxφψ