Metamath Proof Explorer


Theorem 19.33b

Description: The antecedent provides a condition implying the converse of 19.33 . (Contributed by NM, 27-Mar-2004) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 5-Jul-2014)

Ref Expression
Assertion 19.33b ¬xφxψxφψxφxψ

Proof

Step Hyp Ref Expression
1 ianor ¬xφxψ¬xφ¬xψ
2 alnex x¬φ¬xφ
3 pm2.53 φψ¬φψ
4 3 al2imi xφψx¬φxψ
5 2 4 biimtrrid xφψ¬xφxψ
6 olc xψxφxψ
7 5 6 syl6com ¬xφxφψxφxψ
8 19.30 xφψxφxψ
9 8 orcomd xφψxψxφ
10 9 ord xφψ¬xψxφ
11 orc xφxφxψ
12 10 11 syl6com ¬xψxφψxφxψ
13 7 12 jaoi ¬xφ¬xψxφψxφxψ
14 1 13 sylbi ¬xφxψxφψxφxψ
15 19.33 xφxψxφψ
16 14 15 impbid1 ¬xφxψxφψxφxψ