Metamath Proof Explorer


Theorem 19.33b

Description: The antecedent provides a condition implying the converse of 19.33 . (Contributed by NM, 27-Mar-2004) (Proof shortened by Andrew Salmon, 25-May-2011) (Proof shortened by Wolf Lammen, 5-Jul-2014)

Ref Expression
Assertion 19.33b ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )

Proof

Step Hyp Ref Expression
1 ianor ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) ↔ ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) )
2 alnex ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 )
3 pm2.53 ( ( 𝜑𝜓 ) → ( ¬ 𝜑𝜓 ) )
4 3 al2imi ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 ¬ 𝜑 → ∀ 𝑥 𝜓 ) )
5 2 4 syl5bir ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ¬ ∃ 𝑥 𝜑 → ∀ 𝑥 𝜓 ) )
6 olc ( ∀ 𝑥 𝜓 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) )
7 5 6 syl6com ( ¬ ∃ 𝑥 𝜑 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )
8 19.30 ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∃ 𝑥 𝜓 ) )
9 8 orcomd ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∃ 𝑥 𝜓 ∨ ∀ 𝑥 𝜑 ) )
10 9 ord ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ¬ ∃ 𝑥 𝜓 → ∀ 𝑥 𝜑 ) )
11 orc ( ∀ 𝑥 𝜑 → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) )
12 10 11 syl6com ( ¬ ∃ 𝑥 𝜓 → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )
13 7 12 jaoi ( ( ¬ ∃ 𝑥 𝜑 ∨ ¬ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )
14 1 13 sylbi ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) → ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )
15 19.33 ( ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) → ∀ 𝑥 ( 𝜑𝜓 ) )
16 14 15 impbid1 ( ¬ ( ∃ 𝑥 𝜑 ∧ ∃ 𝑥 𝜓 ) → ( ∀ 𝑥 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥 𝜑 ∨ ∀ 𝑥 𝜓 ) ) )