Metamath Proof Explorer


Theorem 19.40b

Description: The antecedent provides a condition implying the converse of 19.40 . This is to 19.40 what 19.33b is to 19.33 . (Contributed by BJ, 6-May-2019) (Proof shortened by Wolf Lammen, 13-Nov-2020)

Ref Expression
Assertion 19.40b xφxψxφxψxφψ

Proof

Step Hyp Ref Expression
1 pm3.21 ψφφψ
2 1 aleximi xψxφxφψ
3 pm3.2 φψφψ
4 3 aleximi xφxψxφψ
5 2 4 jaoa xψxφxφxψxφψ
6 5 orcoms xφxψxφxψxφψ
7 19.40 xφψxφxψ
8 6 7 impbid1 xφxψxφxψxφψ