Metamath Proof Explorer


Theorem 1ellim

Description: A limit ordinal contains 1. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 1ellim LimA1𝑜A

Proof

Step Hyp Ref Expression
1 nlim0 ¬Lim
2 limeq A=LimALim
3 1 2 mtbiri A=¬LimA
4 3 necon2ai LimAA
5 nlim1 ¬Lim1𝑜
6 limeq A=1𝑜LimALim1𝑜
7 5 6 mtbiri A=1𝑜¬LimA
8 7 necon2ai LimAA1𝑜
9 limord LimAOrdA
10 ord1eln01 OrdA1𝑜AAA1𝑜
11 9 10 syl LimA1𝑜AAA1𝑜
12 4 8 11 mpbir2and LimA1𝑜A