Metamath Proof Explorer


Theorem ord1eln01

Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion ord1eln01 OrdA1𝑜AAA1𝑜

Proof

Step Hyp Ref Expression
1 ne0i 1𝑜AA
2 1on 1𝑜On
3 2 onirri ¬1𝑜1𝑜
4 eleq2 A=1𝑜1𝑜A1𝑜1𝑜
5 3 4 mtbiri A=1𝑜¬1𝑜A
6 5 necon2ai 1𝑜AA1𝑜
7 1 6 jca 1𝑜AAA1𝑜
8 el1o A1𝑜A=
9 8 biimpi A1𝑜A=
10 9 necon3ai A¬A1𝑜
11 nesym A1𝑜¬1𝑜=A
12 11 biimpi A1𝑜¬1𝑜=A
13 10 12 anim12ci AA1𝑜¬1𝑜=A¬A1𝑜
14 pm4.56 ¬1𝑜=A¬A1𝑜¬1𝑜=AA1𝑜
15 13 14 sylib AA1𝑜¬1𝑜=AA1𝑜
16 2 onordi Ord1𝑜
17 ordtri2 Ord1𝑜OrdA1𝑜A¬1𝑜=AA1𝑜
18 16 17 mpan OrdA1𝑜A¬1𝑜=AA1𝑜
19 15 18 imbitrrid OrdAAA1𝑜1𝑜A
20 7 19 impbid2 OrdA1𝑜AAA1𝑜