Metamath Proof Explorer


Theorem 1nn

Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997) (Revised by Mario Carneiro, 17-Nov-2014)

Ref Expression
Assertion 1nn 1

Proof

Step Hyp Ref Expression
1 1ex 1V
2 fr0g 1VrecxVx+11ω=1
3 1 2 ax-mp recxVx+11ω=1
4 frfnom recxVx+11ωFnω
5 peano1 ω
6 fnfvelrn recxVx+11ωFnωωrecxVx+11ωranrecxVx+11ω
7 4 5 6 mp2an recxVx+11ωranrecxVx+11ω
8 3 7 eqeltrri 1ranrecxVx+11ω
9 df-nn =recxVx+11ω
10 df-ima recxVx+11ω=ranrecxVx+11ω
11 9 10 eqtri =ranrecxVx+11ω
12 8 11 eleqtrri 1