Metamath Proof Explorer


Theorem 1on

Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion 1on 1𝑜On

Proof

Step Hyp Ref Expression
1 df-1o 1𝑜=suc
2 0elon On
3 1oex 1𝑜V
4 1 3 eqeltrri sucV
5 sucexeloni OnsucVsucOn
6 2 4 5 mp2an sucOn
7 1 6 eqeltri 1𝑜On