Metamath Proof Explorer
		
		
		
		Description:  Alternate proof of 1t1e1 using a different set of axioms (add
     ax-mulrcl , ax-i2m1 , ax-1ne0 , ax-rrecex and remove ax-resscn ,
     ax-mulcom , ax-mulass , ax-distr ).  (Contributed by Steven Nguyen, 20-Sep-2022)  (Proof modification is discouraged.)
     (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 1t1e1ALT |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  | 
						
							| 2 |  | ax-1rid |  | 
						
							| 3 | 1 2 | ax-mp |  |