Metamath Proof Explorer


Theorem 1vgrex

Description: A graph with at least one vertex is a set. (Contributed by AV, 2-Mar-2021)

Ref Expression
Hypothesis 1vgrex.v V=VtxG
Assertion 1vgrex NVGV

Proof

Step Hyp Ref Expression
1 1vgrex.v V=VtxG
2 elfvex NVtxGGV
3 2 1 eleq2s NVGV