Database
REAL AND COMPLEX NUMBERS
Integer sets
Integers (as a subset of complex numbers)
1z
Next ⟩
1zzd
Metamath Proof Explorer
Ascii
Unicode
Theorem
1z
Description:
One is an integer.
(Contributed by
NM
, 10-May-2004)
Ref
Expression
Assertion
1z
$${\u22a2}1\in \mathbb{Z}$$
Proof
Step
Hyp
Ref
Expression
1
1nn
$${\u22a2}1\in \mathbb{N}$$
2
1
nnzi
$${\u22a2}1\in \mathbb{Z}$$