Metamath Proof Explorer


Theorem 2ellim

Description: A limit ordinal contains 2. (Contributed by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 2ellim LimA2𝑜A

Proof

Step Hyp Ref Expression
1 nlim0 ¬Lim
2 limeq A=LimALim
3 1 2 mtbiri A=¬LimA
4 3 necon2ai LimAA
5 nlim1 ¬Lim1𝑜
6 limeq A=1𝑜LimALim1𝑜
7 5 6 mtbiri A=1𝑜¬LimA
8 7 necon2ai LimAA1𝑜
9 nlim2 ¬Lim2𝑜
10 limeq A=2𝑜LimALim2𝑜
11 9 10 mtbiri A=2𝑜¬LimA
12 11 necon2ai LimAA2𝑜
13 limord LimAOrdA
14 ord2eln012 OrdA2𝑜AAA1𝑜A2𝑜
15 13 14 syl LimA2𝑜AAA1𝑜A2𝑜
16 4 8 12 15 mpbir3and LimA2𝑜A