| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nlim0 |  |-  -. Lim (/) | 
						
							| 2 |  | limeq |  |-  ( A = (/) -> ( Lim A <-> Lim (/) ) ) | 
						
							| 3 | 1 2 | mtbiri |  |-  ( A = (/) -> -. Lim A ) | 
						
							| 4 | 3 | necon2ai |  |-  ( Lim A -> A =/= (/) ) | 
						
							| 5 |  | nlim1 |  |-  -. Lim 1o | 
						
							| 6 |  | limeq |  |-  ( A = 1o -> ( Lim A <-> Lim 1o ) ) | 
						
							| 7 | 5 6 | mtbiri |  |-  ( A = 1o -> -. Lim A ) | 
						
							| 8 | 7 | necon2ai |  |-  ( Lim A -> A =/= 1o ) | 
						
							| 9 |  | nlim2 |  |-  -. Lim 2o | 
						
							| 10 |  | limeq |  |-  ( A = 2o -> ( Lim A <-> Lim 2o ) ) | 
						
							| 11 | 9 10 | mtbiri |  |-  ( A = 2o -> -. Lim A ) | 
						
							| 12 | 11 | necon2ai |  |-  ( Lim A -> A =/= 2o ) | 
						
							| 13 |  | limord |  |-  ( Lim A -> Ord A ) | 
						
							| 14 |  | ord2eln012 |  |-  ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( Lim A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) | 
						
							| 16 | 4 8 12 15 | mpbir3and |  |-  ( Lim A -> 2o e. A ) |