Metamath Proof Explorer


Theorem mpbir3and

Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014) (Revised by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mpbir3and.1
|- ( ph -> ch )
mpbir3and.2
|- ( ph -> th )
mpbir3and.3
|- ( ph -> ta )
mpbir3and.4
|- ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
Assertion mpbir3and
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 mpbir3and.1
 |-  ( ph -> ch )
2 mpbir3and.2
 |-  ( ph -> th )
3 mpbir3and.3
 |-  ( ph -> ta )
4 mpbir3and.4
 |-  ( ph -> ( ps <-> ( ch /\ th /\ ta ) ) )
5 1 2 3 3jca
 |-  ( ph -> ( ch /\ th /\ ta ) )
6 5 4 mpbird
 |-  ( ph -> ps )