Metamath Proof Explorer
Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014) (Revised by Mario Carneiro, 9-Jan-2015)
|
|
Ref |
Expression |
|
Hypotheses |
mpbir3and.1 |
⊢ ( 𝜑 → 𝜒 ) |
|
|
mpbir3and.2 |
⊢ ( 𝜑 → 𝜃 ) |
|
|
mpbir3and.3 |
⊢ ( 𝜑 → 𝜏 ) |
|
|
mpbir3and.4 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
|
Assertion |
mpbir3and |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mpbir3and.1 |
⊢ ( 𝜑 → 𝜒 ) |
2 |
|
mpbir3and.2 |
⊢ ( 𝜑 → 𝜃 ) |
3 |
|
mpbir3and.3 |
⊢ ( 𝜑 → 𝜏 ) |
4 |
|
mpbir3and.4 |
⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) ) |
5 |
1 2 3
|
3jca |
⊢ ( 𝜑 → ( 𝜒 ∧ 𝜃 ∧ 𝜏 ) ) |
6 |
5 4
|
mpbird |
⊢ ( 𝜑 → 𝜓 ) |