Metamath Proof Explorer


Theorem mpbir3and

Description: Detach a conjunction of truths in a biconditional. (Contributed by Mario Carneiro, 11-May-2014) (Revised by Mario Carneiro, 9-Jan-2015)

Ref Expression
Hypotheses mpbir3and.1 ( 𝜑𝜒 )
mpbir3and.2 ( 𝜑𝜃 )
mpbir3and.3 ( 𝜑𝜏 )
mpbir3and.4 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
Assertion mpbir3and ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 mpbir3and.1 ( 𝜑𝜒 )
2 mpbir3and.2 ( 𝜑𝜃 )
3 mpbir3and.3 ( 𝜑𝜏 )
4 mpbir3and.4 ( 𝜑 → ( 𝜓 ↔ ( 𝜒𝜃𝜏 ) ) )
5 1 2 3 3jca ( 𝜑 → ( 𝜒𝜃𝜏 ) )
6 5 4 mpbird ( 𝜑𝜓 )