Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlim1 | |- -. Lim 1o | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1n0 | |- 1o =/= (/) | |
| 2 | 0ex | |- (/) e. _V | |
| 3 | 2 | unisn |  |-  U. { (/) } = (/) | 
| 4 | 1 3 | neeqtrri |  |-  1o =/= U. { (/) } | 
| 5 | df1o2 |  |-  1o = { (/) } | |
| 6 | 5 | unieqi |  |-  U. 1o = U. { (/) } | 
| 7 | 4 6 | neeqtrri | |- 1o =/= U. 1o | 
| 8 | 7 | neii | |- -. 1o = U. 1o | 
| 9 | simp3 | |- ( ( Ord 1o /\ 1o =/= (/) /\ 1o = U. 1o ) -> 1o = U. 1o ) | |
| 10 | 8 9 | mto | |- -. ( Ord 1o /\ 1o =/= (/) /\ 1o = U. 1o ) | 
| 11 | df-lim | |- ( Lim 1o <-> ( Ord 1o /\ 1o =/= (/) /\ 1o = U. 1o ) ) | |
| 12 | 10 11 | mtbir | |- -. Lim 1o |