Metamath Proof Explorer


Theorem 2eu2ex

Description: Double existential uniqueness. (Contributed by NM, 3-Dec-2001)

Ref Expression
Assertion 2eu2ex ∃!x∃!yφxyφ

Proof

Step Hyp Ref Expression
1 euex ∃!x∃!yφx∃!yφ
2 euex ∃!yφyφ
3 2 eximi x∃!yφxyφ
4 1 3 syl ∃!x∃!yφxyφ