Metamath Proof Explorer


Theorem 2eximi

Description: Inference adding two existential quantifiers to antecedent and consequent. (Contributed by NM, 3-Feb-2005)

Ref Expression
Hypothesis eximi.1 φψ
Assertion 2eximi xyφxyψ

Proof

Step Hyp Ref Expression
1 eximi.1 φψ
2 1 eximi yφyψ
3 2 eximi xyφxyψ