Metamath Proof Explorer


Theorem 2onn

Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 2onnALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)

Ref Expression
Assertion 2onn 2𝑜ω

Proof

Step Hyp Ref Expression
1 2on 2𝑜On
2 2ellim Limx2𝑜x
3 2 ax-gen xLimx2𝑜x
4 elom 2𝑜ω2𝑜OnxLimx2𝑜x
5 1 3 4 mpbir2an 2𝑜ω