Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
2on
Metamath Proof Explorer
Theorem 2on
Description: Ordinal 2 is an ordinal number. (Contributed by NM , 18-Feb-2004) (Proof
shortened by Andrew Salmon , 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau , 30-Nov-2024)
Ref
Expression
Assertion
2on
⊢ 2 𝑜 ∈ On
Proof
Step
Hyp
Ref
Expression
1
df-2o
⊢ 2 𝑜 = suc ⁡ 1 𝑜
2
1on
⊢ 1 𝑜 ∈ On
3
2oex
⊢ 2 𝑜 ∈ V
4
1 3
eqeltrri
⊢ suc ⁡ 1 𝑜 ∈ V
5
sucexeloni
⊢ 1 𝑜 ∈ On ∧ suc ⁡ 1 𝑜 ∈ V → suc ⁡ 1 𝑜 ∈ On
6
2 4 5
mp2an
⊢ suc ⁡ 1 𝑜 ∈ On
7
1 6
eqeltri
⊢ 2 𝑜 ∈ On