Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 2on | |- 2o e. On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-2o | |- 2o = suc 1o |
|
2 | 1on | |- 1o e. On |
|
3 | 2oex | |- 2o e. _V |
|
4 | 1 3 | eqeltrri | |- suc 1o e. _V |
5 | sucexeloni | |- ( ( 1o e. On /\ suc 1o e. _V ) -> suc 1o e. On ) |
|
6 | 2 4 5 | mp2an | |- suc 1o e. On |
7 | 1 6 | eqeltri | |- 2o e. On |