Metamath Proof Explorer


Theorem 2on

Description: Ordinal 2 is an ordinal number. (Contributed by NM, 18-Feb-2004) (Proof shortened by Andrew Salmon, 12-Aug-2011) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion 2on
|- 2o e. On

Proof

Step Hyp Ref Expression
1 df-2o
 |-  2o = suc 1o
2 1on
 |-  1o e. On
3 2oex
 |-  2o e. _V
4 1 3 eqeltrri
 |-  suc 1o e. _V
5 sucexeloni
 |-  ( ( 1o e. On /\ suc 1o e. _V ) -> suc 1o e. On )
6 2 4 5 mp2an
 |-  suc 1o e. On
7 1 6 eqeltri
 |-  2o e. On