Metamath Proof Explorer


Theorem sucexeloni

Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of suceloni does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion sucexeloni
|- ( ( A e. On /\ suc A e. V ) -> suc A e. On )

Proof

Step Hyp Ref Expression
1 onelss
 |-  ( A e. On -> ( x e. A -> x C_ A ) )
2 velsn
 |-  ( x e. { A } <-> x = A )
3 eqimss
 |-  ( x = A -> x C_ A )
4 2 3 sylbi
 |-  ( x e. { A } -> x C_ A )
5 4 a1i
 |-  ( A e. On -> ( x e. { A } -> x C_ A ) )
6 1 5 orim12d
 |-  ( A e. On -> ( ( x e. A \/ x e. { A } ) -> ( x C_ A \/ x C_ A ) ) )
7 df-suc
 |-  suc A = ( A u. { A } )
8 7 eleq2i
 |-  ( x e. suc A <-> x e. ( A u. { A } ) )
9 elun
 |-  ( x e. ( A u. { A } ) <-> ( x e. A \/ x e. { A } ) )
10 8 9 bitr2i
 |-  ( ( x e. A \/ x e. { A } ) <-> x e. suc A )
11 oridm
 |-  ( ( x C_ A \/ x C_ A ) <-> x C_ A )
12 6 10 11 3imtr3g
 |-  ( A e. On -> ( x e. suc A -> x C_ A ) )
13 sssucid
 |-  A C_ suc A
14 sstr2
 |-  ( x C_ A -> ( A C_ suc A -> x C_ suc A ) )
15 12 13 14 syl6mpi
 |-  ( A e. On -> ( x e. suc A -> x C_ suc A ) )
16 15 ralrimiv
 |-  ( A e. On -> A. x e. suc A x C_ suc A )
17 dftr3
 |-  ( Tr suc A <-> A. x e. suc A x C_ suc A )
18 16 17 sylibr
 |-  ( A e. On -> Tr suc A )
19 onss
 |-  ( A e. On -> A C_ On )
20 snssi
 |-  ( A e. On -> { A } C_ On )
21 19 20 unssd
 |-  ( A e. On -> ( A u. { A } ) C_ On )
22 7 21 eqsstrid
 |-  ( A e. On -> suc A C_ On )
23 ordon
 |-  Ord On
24 trssord
 |-  ( ( Tr suc A /\ suc A C_ On /\ Ord On ) -> Ord suc A )
25 24 3exp
 |-  ( Tr suc A -> ( suc A C_ On -> ( Ord On -> Ord suc A ) ) )
26 23 25 mpii
 |-  ( Tr suc A -> ( suc A C_ On -> Ord suc A ) )
27 18 22 26 sylc
 |-  ( A e. On -> Ord suc A )
28 27 adantr
 |-  ( ( A e. On /\ suc A e. V ) -> Ord suc A )
29 elong
 |-  ( suc A e. V -> ( suc A e. On <-> Ord suc A ) )
30 29 adantl
 |-  ( ( A e. On /\ suc A e. V ) -> ( suc A e. On <-> Ord suc A ) )
31 28 30 mpbird
 |-  ( ( A e. On /\ suc A e. V ) -> suc A e. On )