Metamath Proof Explorer


Theorem sucexeloni

Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of onsuc does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024) (Proof shortened by BJ, 11-Jan-2025)

Ref Expression
Assertion sucexeloni
|- ( ( A e. On /\ suc A e. V ) -> suc A e. On )

Proof

Step Hyp Ref Expression
1 eloni
 |-  ( A e. On -> Ord A )
2 ordsuci
 |-  ( Ord A -> Ord suc A )
3 1 2 syl
 |-  ( A e. On -> Ord suc A )
4 elex
 |-  ( suc A e. V -> suc A e. _V )
5 elong
 |-  ( suc A e. _V -> ( suc A e. On <-> Ord suc A ) )
6 5 biimparc
 |-  ( ( Ord suc A /\ suc A e. _V ) -> suc A e. On )
7 3 4 6 syl2an
 |-  ( ( A e. On /\ suc A e. V ) -> suc A e. On )