Step |
Hyp |
Ref |
Expression |
1 |
|
onelss |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
2 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 ) |
3 |
|
eqimss |
⊢ ( 𝑥 = 𝐴 → 𝑥 ⊆ 𝐴 ) |
4 |
2 3
|
sylbi |
⊢ ( 𝑥 ∈ { 𝐴 } → 𝑥 ⊆ 𝐴 ) |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ { 𝐴 } → 𝑥 ⊆ 𝐴 ) ) |
6 |
1 5
|
orim12d |
⊢ ( 𝐴 ∈ On → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐴 } ) → ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴 ) ) ) |
7 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
8 |
7
|
eleq2i |
⊢ ( 𝑥 ∈ suc 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) ) |
9 |
|
elun |
⊢ ( 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐴 } ) ) |
10 |
8 9
|
bitr2i |
⊢ ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ { 𝐴 } ) ↔ 𝑥 ∈ suc 𝐴 ) |
11 |
|
oridm |
⊢ ( ( 𝑥 ⊆ 𝐴 ∨ 𝑥 ⊆ 𝐴 ) ↔ 𝑥 ⊆ 𝐴 ) |
12 |
6 10 11
|
3imtr3g |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ suc 𝐴 → 𝑥 ⊆ 𝐴 ) ) |
13 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
14 |
|
sstr2 |
⊢ ( 𝑥 ⊆ 𝐴 → ( 𝐴 ⊆ suc 𝐴 → 𝑥 ⊆ suc 𝐴 ) ) |
15 |
12 13 14
|
syl6mpi |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ suc 𝐴 → 𝑥 ⊆ suc 𝐴 ) ) |
16 |
15
|
ralrimiv |
⊢ ( 𝐴 ∈ On → ∀ 𝑥 ∈ suc 𝐴 𝑥 ⊆ suc 𝐴 ) |
17 |
|
dftr3 |
⊢ ( Tr suc 𝐴 ↔ ∀ 𝑥 ∈ suc 𝐴 𝑥 ⊆ suc 𝐴 ) |
18 |
16 17
|
sylibr |
⊢ ( 𝐴 ∈ On → Tr suc 𝐴 ) |
19 |
|
onss |
⊢ ( 𝐴 ∈ On → 𝐴 ⊆ On ) |
20 |
|
snssi |
⊢ ( 𝐴 ∈ On → { 𝐴 } ⊆ On ) |
21 |
19 20
|
unssd |
⊢ ( 𝐴 ∈ On → ( 𝐴 ∪ { 𝐴 } ) ⊆ On ) |
22 |
7 21
|
eqsstrid |
⊢ ( 𝐴 ∈ On → suc 𝐴 ⊆ On ) |
23 |
|
ordon |
⊢ Ord On |
24 |
|
trssord |
⊢ ( ( Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On ) → Ord suc 𝐴 ) |
25 |
24
|
3exp |
⊢ ( Tr suc 𝐴 → ( suc 𝐴 ⊆ On → ( Ord On → Ord suc 𝐴 ) ) ) |
26 |
23 25
|
mpii |
⊢ ( Tr suc 𝐴 → ( suc 𝐴 ⊆ On → Ord suc 𝐴 ) ) |
27 |
18 22 26
|
sylc |
⊢ ( 𝐴 ∈ On → Ord suc 𝐴 ) |
28 |
27
|
adantr |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉 ) → Ord suc 𝐴 ) |
29 |
|
elong |
⊢ ( suc 𝐴 ∈ 𝑉 → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) ) |
30 |
29
|
adantl |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉 ) → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) ) |
31 |
28 30
|
mpbird |
⊢ ( ( 𝐴 ∈ On ∧ suc 𝐴 ∈ 𝑉 ) → suc 𝐴 ∈ On ) |