Metamath Proof Explorer


Theorem sucexeloni

Description: If the successor of an ordinal number exists, it is an ordinal number. This variation of suceloni does not require ax-un . (Contributed by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion sucexeloni ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → suc 𝐴 ∈ On )

Proof

Step Hyp Ref Expression
1 onelss ( 𝐴 ∈ On → ( 𝑥𝐴𝑥𝐴 ) )
2 velsn ( 𝑥 ∈ { 𝐴 } ↔ 𝑥 = 𝐴 )
3 eqimss ( 𝑥 = 𝐴𝑥𝐴 )
4 2 3 sylbi ( 𝑥 ∈ { 𝐴 } → 𝑥𝐴 )
5 4 a1i ( 𝐴 ∈ On → ( 𝑥 ∈ { 𝐴 } → 𝑥𝐴 ) )
6 1 5 orim12d ( 𝐴 ∈ On → ( ( 𝑥𝐴𝑥 ∈ { 𝐴 } ) → ( 𝑥𝐴𝑥𝐴 ) ) )
7 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
8 7 eleq2i ( 𝑥 ∈ suc 𝐴𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) )
9 elun ( 𝑥 ∈ ( 𝐴 ∪ { 𝐴 } ) ↔ ( 𝑥𝐴𝑥 ∈ { 𝐴 } ) )
10 8 9 bitr2i ( ( 𝑥𝐴𝑥 ∈ { 𝐴 } ) ↔ 𝑥 ∈ suc 𝐴 )
11 oridm ( ( 𝑥𝐴𝑥𝐴 ) ↔ 𝑥𝐴 )
12 6 10 11 3imtr3g ( 𝐴 ∈ On → ( 𝑥 ∈ suc 𝐴𝑥𝐴 ) )
13 sssucid 𝐴 ⊆ suc 𝐴
14 sstr2 ( 𝑥𝐴 → ( 𝐴 ⊆ suc 𝐴𝑥 ⊆ suc 𝐴 ) )
15 12 13 14 syl6mpi ( 𝐴 ∈ On → ( 𝑥 ∈ suc 𝐴𝑥 ⊆ suc 𝐴 ) )
16 15 ralrimiv ( 𝐴 ∈ On → ∀ 𝑥 ∈ suc 𝐴 𝑥 ⊆ suc 𝐴 )
17 dftr3 ( Tr suc 𝐴 ↔ ∀ 𝑥 ∈ suc 𝐴 𝑥 ⊆ suc 𝐴 )
18 16 17 sylibr ( 𝐴 ∈ On → Tr suc 𝐴 )
19 onss ( 𝐴 ∈ On → 𝐴 ⊆ On )
20 snssi ( 𝐴 ∈ On → { 𝐴 } ⊆ On )
21 19 20 unssd ( 𝐴 ∈ On → ( 𝐴 ∪ { 𝐴 } ) ⊆ On )
22 7 21 eqsstrid ( 𝐴 ∈ On → suc 𝐴 ⊆ On )
23 ordon Ord On
24 trssord ( ( Tr suc 𝐴 ∧ suc 𝐴 ⊆ On ∧ Ord On ) → Ord suc 𝐴 )
25 24 3exp ( Tr suc 𝐴 → ( suc 𝐴 ⊆ On → ( Ord On → Ord suc 𝐴 ) ) )
26 23 25 mpii ( Tr suc 𝐴 → ( suc 𝐴 ⊆ On → Ord suc 𝐴 ) )
27 18 22 26 sylc ( 𝐴 ∈ On → Ord suc 𝐴 )
28 27 adantr ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → Ord suc 𝐴 )
29 elong ( suc 𝐴𝑉 → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) )
30 29 adantl ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → ( suc 𝐴 ∈ On ↔ Ord suc 𝐴 ) )
31 28 30 mpbird ( ( 𝐴 ∈ On ∧ suc 𝐴𝑉 ) → suc 𝐴 ∈ On )