Metamath Proof Explorer


Theorem 2reu2

Description: Double restricted existential uniqueness, analogous to 2eu2 . (Contributed by Alexander van der Vekens, 29-Jun-2017)

Ref Expression
Assertion 2reu2 ∃!yBxAφ∃!xA∃!yBφ∃!xAyBφ

Proof

Step Hyp Ref Expression
1 reurmo ∃!yBxAφ*yBxAφ
2 2rmorex *yBxAφxA*yBφ
3 2reu1 xA*yBφ∃!xA∃!yBφ∃!xAyBφ∃!yBxAφ
4 simpl ∃!xAyBφ∃!yBxAφ∃!xAyBφ
5 3 4 biimtrdi xA*yBφ∃!xA∃!yBφ∃!xAyBφ
6 1 2 5 3syl ∃!yBxAφ∃!xA∃!yBφ∃!xAyBφ
7 2rexreu ∃!xAyBφ∃!yBxAφ∃!xA∃!yBφ
8 7 expcom ∃!yBxAφ∃!xAyBφ∃!xA∃!yBφ
9 6 8 impbid ∃!yBxAφ∃!xA∃!yBφ∃!xAyBφ