Description: Double restricted existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one, analogous to 2eu1 . (Contributed by Alexander van der Vekens, 25-Jun-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | 2reu1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2reu5a | |
|
2 | simprr | |
|
3 | rsp | |
|
4 | 3 | adantr | |
5 | 4 | impcom | |
6 | 2 5 | jca | |
7 | 6 | ex | |
8 | 7 | rmoimia | |
9 | nfra1 | |
|
10 | 9 | rmoanim | |
11 | 8 10 | sylib | |
12 | 11 | ancrd | |
13 | 2rmoswap | |
|
14 | 13 | com12 | |
15 | 14 | imdistani | |
16 | 12 15 | syl6 | |
17 | 1 16 | simplbiim | |
18 | 2reu2rex | |
|
19 | rexcom | |
|
20 | 18 19 | sylib | |
21 | 18 20 | jca | |
22 | 17 21 | jctild | |
23 | reu5 | |
|
24 | reu5 | |
|
25 | 23 24 | anbi12i | |
26 | an4 | |
|
27 | 25 26 | bitri | |
28 | 22 27 | imbitrrdi | |
29 | 28 | com12 | |
30 | 2rexreu | |
|
31 | 29 30 | impbid1 | |