Metamath Proof Explorer


Theorem 2reu4

Description: Definition of double restricted existential uniqueness ("exactly one x and exactly one y "), analogous to 2eu4 . (Contributed by Alexander van der Vekens, 1-Jul-2017)

Ref Expression
Assertion 2reu4 ∃!xAyBφ∃!yBxAφxAyBφzAwBxAyBφx=zy=w

Proof

Step Hyp Ref Expression
1 reurex ∃!xAyBφxAyBφ
2 rexn0 xAyBφA
3 1 2 syl ∃!xAyBφA
4 reurex ∃!yBxAφyBxAφ
5 rexn0 yBxAφB
6 4 5 syl ∃!yBxAφB
7 3 6 anim12i ∃!xAyBφ∃!yBxAφAB
8 ne0i xAA
9 ne0i yBB
10 8 9 anim12i xAyBAB
11 10 a1d xAyBφAB
12 11 rexlimivv xAyBφAB
13 12 adantr xAyBφzAwBxAyBφx=zy=wAB
14 2reu4lem AB∃!xAyBφ∃!yBxAφxAyBφzAwBxAyBφx=zy=w
15 7 13 14 pm5.21nii ∃!xAyBφ∃!yBxAφxAyBφzAwBxAyBφx=zy=w