Metamath Proof Explorer


Theorem 2reureurex

Description: Double restricted existential uniqueness implies restricted existential uniqueness with restricted existence. (Contributed by AV, 5-Jul-2023)

Ref Expression
Assertion 2reureurex ∃! x A, y B φ ∃! x A y B φ

Proof

Step Hyp Ref Expression
1 df-2reu ∃! x A, y B φ ∃! x A y B φ ∃! y B x A φ
2 1 simplbi ∃! x A, y B φ ∃! x A y B φ