Metamath Proof Explorer


Theorem 2sbbii

Description: Infer double substitution into both sides of a logical equivalence. (Contributed by AV, 30-Jul-2023)

Ref Expression
Hypothesis sbbii.1 φψ
Assertion 2sbbii txuyφtxuyψ

Proof

Step Hyp Ref Expression
1 sbbii.1 φψ
2 1 sbbii uyφuyψ
3 2 sbbii txuyφtxuyψ