Metamath Proof Explorer


Theorem 3adant3r3

Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 18-Feb-2008)

Ref Expression
Hypothesis ad4ant3.1 φψχθ
Assertion 3adant3r3 φψχτθ

Proof

Step Hyp Ref Expression
1 ad4ant3.1 φψχθ
2 1 3expb φψχθ
3 2 3adantr3 φψχτθ