Metamath Proof Explorer


Theorem 3atlem3

Description: Lemma for 3at . (Contributed by NM, 23-Jun-2012)

Ref Expression
Hypotheses 3at.l ˙=K
3at.j ˙=joinK
3at.a A=AtomsK
Assertion 3atlem3 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U

Proof

Step Hyp Ref Expression
1 3at.l ˙=K
2 3at.j ˙=joinK
3 3at.a A=AtomsK
4 simpl1 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UKHLPAQARASATAUA
5 simpl21 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙U¬R˙P˙Q
6 simpl22 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UPU
7 simpr KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UP˙T˙U
8 6 7 jca KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UPUP˙T˙U
9 simpl23 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙U¬Q˙P˙U
10 simpl3 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UP˙Q˙R˙S˙T˙U
11 1 2 3 3atlem2 KHLPAQARASATAUA¬R˙P˙QPUP˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
12 4 5 8 9 10 11 syl131anc KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙T˙UP˙Q˙R=S˙T˙U
13 simpl1 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙UKHLPAQARASATAUA
14 simpl21 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙U¬R˙P˙Q
15 simpr KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙U¬P˙T˙U
16 simpl23 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙U¬Q˙P˙U
17 simpl3 KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙UP˙Q˙R˙S˙T˙U
18 1 2 3 3atlem1 KHLPAQARASATAUA¬R˙P˙Q¬P˙T˙U¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U
19 13 14 15 16 17 18 syl131anc KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙U¬P˙T˙UP˙Q˙R=S˙T˙U
20 12 19 pm2.61dan KHLPAQARASATAUA¬R˙P˙QPU¬Q˙P˙UP˙Q˙R˙S˙T˙UP˙Q˙R=S˙T˙U